判别式模型 Discriminative model - AI全书 (1) -- 知识铺 -- 知识铺
访问量 38
发表于 2023-03-15
更新于 2024-03- 18
5~6 分钟 阅读
百科介绍
百度百科(详情)
在机器学习领域判别模型是一种对未知数据 y 与已知数据 x 之间关系进行建模的方法。判别模型是一种基于概率理论的方法。已知输入变量 x ,判别模型通过构建条件概率分布 P(y|x) 预测 y 。
维基百科(详情)
判别模型,也称为条件模型,是一类用于统计分类的模型,尤其是在有监督的 机器学习中。判别分类器试图通过仅依赖于观察到的数据进行建模,同时学习如何从给定的统计数据进行分类。监督学习中使用的方法可以分为判别模型或生成模型。与生成模型相比,判别模型对分布的假设较少,但在很大程度上取决于数据的质量。
例如,给定一组狗和兔子的标记图片,辨别模型将新的未标记图片与最相似的标记图片匹配,然后给出标签类,狗或兔子。然而,生成将开发一个模型,应该能够从他们所做的假设输出类标签到未标记的图片,就像所有兔子都有红眼。典型的判别学习方法包括逻辑回归(LR),支持向量机(SVM) ),条件随机场(CRF)(在无向图上指定)等。典型的生成模型方法包含朴素贝叶斯,高斯混合模型等
扩展阅读
入门类
- 原文作者:知识铺
- 原文链接:https://index.zshipu.com/ai/post/20241218/%E5%88%A4%E5%88%AB%E5%BC%8F%E6%A8%A1%E5%9E%8B-Discriminative-model-AI%E5%85%A8%E4%B9%A6-1--%E7%9F%A5%E8%AF%86%E9%93%BA--%E7%9F%A5%E8%AF%86%E9%93%BA/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com