通俗的理解牛顿莱布尼茨公式及其证明
知乎 Flame 的回答
你觉得绕是因为逻辑本来就有问题,积分上限函数是不定积分的本质,而不是什么原函数。
定积分(也叫黎曼积分,Riemann Integral) 为给定区间无限分割求和,求和符号
拉长变成表无限
,
的微分
区别于有限分割求和的
表示无限分割。
构造从积分上限映射到定积分的函数
,称为不定积分,
\\ Ⅰ. 由定积分定义,积分上限\\
增加一
,不定积分恰增加一
,后者是前者的无穷小量(说下“无穷小量”这个将错就错的历史名词,它并不表示任何量的大小,而是说明一个量趋于零时,另一个量的变化趋势,故而高阶低阶不是大小不同而是变化速度不同),
这直接说明不定积分之导数为被积函数
,故不定积分可逆用求导法拼凑原函数
求得。
(你之前在计算不定积分时所用的变量代换,凑微分,分部积分,不都是逆用求导吗?)
这里我们指出求不定积分时的任意常数
实质是积分下限
未定。
\\ Ⅱ. 据定积分对区间的可加性(由定义和几何意义可以看出)即可将定积分表示为不定积分的两个值的差。**
注意到等式最右边的两项积分下限一致,因此任意常数
的选取不会影响定积分的计算。
到这儿就差不多了,但我还是建议继续往下看。
我们回过头来看,
是
在
上的总变化值,
是在
上每一个小变化值之和,二者相等是理所当然的。因此整个公式的核心就在于 Ⅰ 中的
,
也即
只要此式成立,公式就成立。
从积分看,它要求被积函数在极限情形下具有线性函数的性质(或者说,函数足够地 光滑 ); 从微分看,你对此式应十分熟悉,它就是微分的表达式,而微分也是极限情形下对函数进行线性近似,现在你对\\ “微分与增量之差是
的高阶无穷小”的意义\\ 应有了更深的体会,传统教材中的导数一章中微分的那一节并不是没有意义的,整个积分学是以此为基础的。
(课本里不是管微分叫增量的“线性主部”吗?如果非主部的部分可以忽略,不就是近似当作线性函数来处理吗?)
所以说, 微分法和积分法都是在极限情形下对函数的线性处理方法。
有了这个逻辑顺序后,才应该考虑如何拼凑的技巧性。而不是莫名其妙地告诉你把逆用求导叫做不定积分,再给你一个莫名奇妙的符号
表示这个运算,然后花大量篇幅讨论技巧性完毕后讲定积分,结果技巧变本质,本质倒成了“拐弯抹角”的方法。
以上论述有没有缺陷呢?
有,\\ Ⅰ中定义的不定积分 **
** 并不一定每一点都是可导的, \\
并不是一定存在的,容易看出“
连续时,
必是其原函数”。若
不可导便不能称其为
的原函数,也就不再是通行教材中的不定积分(原函数 + 任意常数 C)。这就是为什么 即使定积分可积,但原函数却不一定存在。
然而出于**应用公式计算定积分的目的,个别点的连续性并不会影响定积分作为和式极限的存在。**只要采用分段求和的办法,每个区间上的原函数仍是存在的。
所以,牛顿莱布尼兹公式适用于的函数是那些足够光滑,以至于在极限条件下可作线性函数来处理的函数。这个“光滑”的要求很特殊,虽然很常见却只是所有函数的冰山一角。
如果研究更普遍的情形,就可能会存在这样的情况,极限情形下的线性近似
对于某些函数不再成立,比如著名的 Dirichlet 函数。这是当然,因为这线性近似并非函数的一般性质。对于这样的函数该怎么办呢?*Lebesgue *笑了。
知乎 Kevin Wayne 的回答:
我们用分点
将被积区间
等分成
个小区间,每个小区间长度为
。相应的原函数
的总改变量
可分为
个部分改变量的和。即:
根据 微分中值定理,在每个小区间
内,一定存在一点
,使得
。
从而
。
当
时,根据定积分的定义,我们有
,商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com