谷歌阿里微软等大深度学习模型最全演化图谱推荐广告搜索领域
今天我们一起回顾一下 近3年来的所有主流深度学习CTR模型,也是我工作之余的知识总结,希望能帮大家梳理推荐系统、计算广告领域在深度学习方面的前沿进展。
随着微软的Deep Crossing,Google的Wide&Deep,以及FNN,PNN等一大批优秀的深度学习CTR预估模型在2016年被提出, 计算广告和推荐系统领域全面进入了深度学习时代,时至今日,深度学习CTR模型已经成为广告和推荐领域毫无疑问的主流。在之前的专栏文章《 前深度学习时代CTR预估模型的演化之路》中,我们与大家一起探讨了传统CTR模型的结构特点以及演化关系。在进入深度学习时代之后,CTR模型不仅在表达能力、模型效果上有了质的提升,而且大量借鉴并融合了深度学习在图像、语音以及自然语言处理方向的成果,在模型结构上进行了快速的演化。
本文总结了广告、推荐领域最为流行的10个深度学习CTR模型的结构特点,构建了它们之间的演化图谱。选择模型的标准尽量遵循下面三个原则:
- 模型的在业界影响力较大的;
- 已经被Google,微软,阿里等知名互联网公司成功应用的;
- 工程导向的,而不是仅用实验数据验证或学术创新用的。
下面首先列出这张 深度学习CTR模型的演化图谱,再对其进行逐一介绍:
图1 深度学习CTR模型演化图谱
一、微软Deep Crossing(2016年)——深度学习CTR模型的base model
图2 微软Deep Crossing模型架构图
微软于2016年提出的Deep Crossing可以说是 深度学习CTR模型的最典型和基础性的模型。如图2的模型结构图所示,它涵盖了深度CTR模型最典型的要素,即通过加入embedding层将稀疏特征转化为低维稠密特征,用stacking layer,或者叫做concat layer将分段的特征向量连接起来,再通过多层神经网络完成特征的组合、转换,最终用scoring layer完成CTR的计算。跟经典DNN有所不同的是,Deep crossing采用的multilayer perceptron是由残差网络组成的,这无疑得益于MSRA著名研究员何恺明提出的著名的152层ResNet。
二、FNN(2016年)——用FM的隐向量完成Embedding初始化
图3 FNN模型架构图
FNN相比Deep Crossing的创新在于 使用FM的隐层向量作为user和item的Embedding,从而避免了完全从随机状态训练Embedding。由于id类特征大量采用one-hot的编码方式,导致其维度极大,向量极稀疏,所以Embedding层与输入层的连接极多,梯度下降的效率很低,这大大增加了模型的训练时间和Embedding的不稳定性,使用pre train的方法完成Embedding层的训练,无疑是降低深度学习模型复杂度和训练不稳定性的有效工程经验。
论文: [FNN] Deep Learning over Multi-field Categorical Data (UCL 2016)
三、PNN (2016年)——丰富特征交叉的方式
图4 PNN模型架构图
PNN的全称是Product-based Neural Network, PNN的关键在于在embedding层和全连接层之间加入了Product layer。传统的DNN是直接通过多层全连接层完成特征的交叉和组合的,但这样的方式缺乏一定的“针对性”。首先全连接层并没有针对不同特征域之间进行交叉;其次,全连接层的操作也并不是直接针对特征交叉设计的。但在实际问题中,特征交叉的重要性不言而喻,比如年龄与性别的交叉是非常重要的分组特征,包含了大量高价值的信息,我们急需深度学习网络能够有针对性的结构能够表征这些信息。因此PNN通过加入Product layer完成了针对性的特征交叉,其product操作在不同特征域之间进行特征组合。并定义了inner product,outer product等多种product的操作捕捉不同的交叉信息,增强模型表征不同数据模式的能力 。
论文: [PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016)
四、Google Wide&Deep(2016年)——记忆能力和泛化能力的综合权衡
图5 Google Wide&Deep模型架构图
Google Wide&Deep模型的主要思路正如其名, 把单输入层的Wide部分和经过多层感知机的Deep部分连接起来,一起输入最终的输出层。其中Wide部分的主要作用是让模型具有记忆性(Memorization),单层的Wide部分善于处理大量稀疏的id类特征,便于让模型直接“记住”用户的大量历史信息;Deep部分的主要作用是让模型具有“泛化性”(Generalization),利用DNN表达能力强的特点,挖掘藏在特征后面的数据模式。最终利用LR输出层将Wide部分和Deep部分组合起来,形成统一的模型。Wide&Deep对之后模型的影响在于——大量深度学习模型采用了两部分甚至多部分组合的形式,利用不同网络结构挖掘不同的信息后进行组合,充分利用和结合了不同网络结构的特点。
论文: [Wide&Deep] Wide & Deep Learning for Recommender Systems (Google 2016)
五、华为 DeepFM (2017年)——用FM代替Wide部分
图6 华为DeepFM模型架构图
在Wide&Deep之后,诸多模型延续了双网络组合的结构,DeepFM就是其中之一。DeepFM对Wide&Deep的改进之处在于,它 用FM替换掉了原来的Wide部分,加强了浅层网络部分特征组合的能力。事实上,由于FM本身就是由一阶部分和二阶部分组成的,DeepFM相当于同时组合了原Wide部分+二阶特征交叉部分+Deep部分三种结构,无疑进一步增强了模型的表达能力。
论文: [DeepFM] A Factorization-Machine based Neural Network for CTR Prediction (HIT-Huawei 2017)
六、Google Deep&Cross(2017年)——使用Cross网络代替Wide部分
图7 Google Deep Cross Network模型架构图
Google 2017年发表的Deep&Cross Network(DCN)同样是对Wide&Deep的进一步改进,主要的思路 使用Cross网络替代了原来的Wide部分。其中设计Cross网络的基本动机是为了增加特征之间的交互力度,使用多层cross layer对输入向量进行特征交叉。单层cross layer的基本操作是将cross layer的输入向量xl与原始的输入向量x0进行交叉,并加入bias向量和原始xl输入向量。DCN本质上还是对Wide&Deep Wide部分表达能力不足的问题进行改进,与DeepFM的思路非常类似。
论文: [DCN] Deep & Cross Network for Ad Click Predictions (Stanford 2017)
七、NFM(2017年)——对Deep部分的改进
图8 NFM的深度网络部分模型架构图
相对于DeepFM和DCN对于Wide&Deep Wide部分的改进, NFM可以看作是对Deep部分的改进。NFM的全称是Neural Factorization Machines,如果我们从深度学习网络架构的角度看待FM,FM也可以看作是由单层LR与二阶特征交叉组成的Wide&Deep的架构,与经典W&D的不同之处仅在于Deep部分变成了二阶隐向量相乘的形式。再进一步,NFM从修改FM二阶部分的角度出发,用一个带Bi-interaction Pooling层的DNN替换了FM的特征交叉部分,形成了独特的Wide&Deep架构。其中Bi-interaction Pooling可以看作是不同特征embedding的element-wise product的形式。这也是NFM相比Google Wide&Deep的创新之处。
论文: [NFM] Neural Factorization Machines for Sparse Predictive Analytics (NUS 2017)
八、AFM(2017年)——引入Attention机制的FM
图9 AFM模型架构图
AFM的全称是Attentional Factorization Machines,通过前面的介绍我们很清楚的知道,FM其实就是经典的Wide&Deep结构,其中Wide部分是FM的一阶部分,Deep部分是FM的二阶部分,而 AFM顾名思义,就是引入Attention机制的FM,具体到模型结构上,AFM其实是对FM的二阶部分的每个交叉特征赋予了权重,这个权重控制了交叉特征对最后结果的影响,也就非常类似于NLP领域的注意力机制(Attention Mechanism)。为了训练Attention权重,AFM加入了Attention Net,利用Attention Net训练好Attention权重后,再反向作用于FM二阶交叉特征之上,使FM获得根据样本特点调整特征权重的能力。
九、阿里DIN(2018年)——阿里加入Attention机制的深度学习网络
图10 阿里DIN模型与Base模型的架构图
AFM在FM中加入了Attention机制,2018年,阿里巴巴正式提出了融合了Attention机制的深度学习模型——Deep Interest Network。与AFM将Attention与FM结合不同的是, DIN将Attention机制作用于深度神经网络,在模型的embedding layer和concatenate layer之间加入了attention unit,使模型能够根据候选商品的不同,调整不同特征的权重。
论文: [DIN] Deep Interest Network for Click-Through Rate Prediction (Alibaba 2018)
十、阿里DIEN(2018年)——DIN的“进化”
阿里DIEN模型架构图
DIEN的全称为Deep Interest Evolution Network,它不仅是对DIN的进一步“进化”,更重要的是 DIEN通过引入序列模型 AUGRU模拟了用户兴趣进化的过程。具体来讲模型的主要特点是在Embedding layer和Concatenate layer之间加入了生成兴趣的Interest Extractor Layer和模拟兴趣演化的Interest Evolving layer。其中Interest Extractor Layer使用了DIN的结构抽取了每一个时间片内用户的兴趣,Interest Evolving layer则利用序列模型AUGRU的结构将不同时间的用户兴趣串联起来,形成兴趣进化的链条。最终再把当前时刻的“兴趣向量”输入上层的多层全连接网络,与其他特征一起进行最终的CTR预估。
论文: [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
总结—— CTR模型的深度学习时代
文章的最后,我再次强调这张深度学习CTR模型演化图,可以毫不夸张的说, 这张演化图包括了近年来所有主流的深度学习CTR模型的结构特点以及它们之间的演化关系。希望能够帮助推荐、广告、搜索领域的算法工程师们建立起完整的知识体系,能够驾轻就熟的针对业务特点应用并比较不同模型的效果,从而用最适合当前数据模式的模型驱动公司业务。
结合自己的工作经验,关于深度学习模型我想再分享两点内容:
- 没有银弹。从来没有一个深度学习模型能够在所有数据集上都表现最优,特别是推荐、广告领域,各家的数据集,数据pattern、业务领域差异巨大,不存在能够解决一切问题的“银弹”模型。比如,阿里的DIEN对于数据质量、用户整个life cycle行为完整性的要求很高,如果在某些DSP场景下运用这个模型,预计不会收到良好的效果。再比如Google 的Deep&Cross,我们也要考虑自己的数据集需不需要如此复杂的特征交叉方式,在一些百万量级的数据集上,也许浅层神经网络的表现更好。
- 算法工程师永远要在理想和现实间做trade off。有一种思想要避免,就是我为了要上某个模型就要强转团队的技术栈,强买�
- 原文作者:知识铺
- 原文链接:https://index.zshipu.com/geek/post/%E4%BA%92%E8%81%94%E7%BD%91/%E8%B0%B7%E6%AD%8C%E9%98%BF%E9%87%8C%E5%BE%AE%E8%BD%AF%E7%AD%89%E5%A4%A7%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A8%A1%E5%9E%8B%E6%9C%80%E5%85%A8%E6%BC%94%E5%8C%96%E5%9B%BE%E8%B0%B1%E6%8E%A8%E8%8D%90%E5%B9%BF%E5%91%8A%E6%90%9C%E7%B4%A2%E9%A2%86%E5%9F%9F/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com