计算机视觉面试题面试考点精准详尽解析
添加客服微信:julyedufu77:回复 “ 7 ”,领取最新升级版《名企AI面试100题》电子书!!
1、基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
一、目标检测常见算法
object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。
然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。
目前学术和工业界出现的目标检测算法分成3类:
- 传统的目标检测算法:Cascade + HOG/DPM + Haar/SVM以及上述方法的诸多改进、优化;
- 候选区域/框 + 深度学习分类:通过提取候选区域,并对相应区域进行以深度学习方法为主的分类的方案,如:
R-CNN(Selective Search + CNN + SVM)
SPP-net(ROI Pooling)
Fast R-CNN(Selective Search + CNN + ROI)
Faster R-CNN(RPN + CNN + ROI)
R-FCN
等系列方法;
- 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等
传统目标检测流程:
- 区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高)
- 特征提取(SIFT、HOG等;形态多样性、光照变化多样性、背景多样性使得特征鲁棒性差)
- 分类器分类(主要有SVM、Adaboost等)
2、请简单解释下目标检测中的这个IOU评价函数(intersection-over-union)
解析一
在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(DetectionResult)与 Ground Truth 的交集比上它们的并集,即为检测的准确率 IoU :
如下图所示:GT = GroundTruth; DR = DetectionResult;
黄色边框框起来的是:
GT⋂DR
绿色框框起来的是:
GT⋃DR
应该够详细了,上幅图直观些。当然最理想的情况就是 DR 与 GT 完全重合,即
IoU=1
下面附上图例说明
原图则如下
3、KNN与K-means区别?
Wikipedia上的 KNN词条 中有一个比较经典的图如下:
KNN算法流程:
从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。
如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。
我们可以看到,KNN本质是基于一种数据统计的方法!其实很多机器学习算法也是基于数据统计的。
KNN是一种m
- 原文作者:知识铺
- 原文链接:https://index.zshipu.com/geek/post/%E4%BA%92%E8%81%94%E7%BD%91/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E9%9D%A2%E8%AF%95%E9%A2%98%E9%9D%A2%E8%AF%95%E8%80%83%E7%82%B9%E7%B2%BE%E5%87%86%E8%AF%A6%E5%B0%BD%E8%A7%A3%E6%9E%90/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com