旷视北邮等国内团队包揽六项第一联合挑战赛结果公布
今日,ECCV 2018 COCO + Mapillary 联合挑战赛结果公布,来自国内的旷视科技、港中文 - 商汤联合实验室、北邮、滴滴等团队获得了这一挑战赛全部六大赛项的第一名。
当地时间 9 月 8 日,两年一度的欧洲计算机视觉顶级学术会议 ECCV 2018 在德国慕尼黑拉开帷幕。作为计算机视觉领域的三大顶会之一,ECCV 2018 受到了极大的关注,火热异常。如今大会官网还挂着一份醒目的通知:大会已满额,没地方了。
据数据显示,本届大会注册参会人数近 3200 人,收到论文投稿 2439 篇,其中接收 776 篇(31.8%)。在活动方面,ECCV 2018 共有 43 场 Workshops 和 11 场 Tutorials。
今日,在大会研讨会 Joint COCO and Mapilary Recognition Challenge Workshop 上,会议组织方公布了备受关注的 COCO + Mapillary 联合挑战赛的结果,来自中国的创业公司、高校团队包揽了 6 个项赛的第一名。
挑战赛简介
计算机视觉领域有众多挑战赛,MS COCO 是其中最受关注和最权威的比赛之一。COCO 是英文 Commen Objects in Context 的缩写,并有同名论文发布。COCO 数据集针对全场景理解而设计,意在促进物体检测研究发展。
Mapillary Vistas 是新近推出的街景集图像数据集,专注于图像的高阶语义理解,推动自动驾驶和机器人导航等领域的技术落地。在数据集和应用任务方面,两者有很多不同,而后者对前者起补足作用。通常来讲,COCO 是自然场景下的物体识别,Mapillary 则聚焦于街景场景识别,因此联合挑战赛的形式有利于计算机视觉技术更贴近现实场景,更具应用价值。
本届在 ECCV 2018 上的 COCO + Mapillary 联合挑战赛,包含 4 项 COCO 比赛、2 项 Mapillary 比赛,共计 6 个赛项。
其中 COCO 挑战赛项有 :
-
Instance Segmentation(实例分割)
-
Panotic Segmentation(全景分割)
-
Keypoints(人体关键点检测)
-
DensePose(人体密集姿态估计)
Mapillary 挑战赛项包括:
-
Vistas Instance Segmentation(路景实例分割)
-
Vistas Panotic Segmentation(路景全景分割)
值得一提的是,自 2015 年首届挑战赛以来,COCO 赛项数量不断更新,评估标准也更加复杂。COCO 2018 相较往年又有改变。在检测方面,实例分割近年在 COCO 上大为流行,今年,COCO 和 Mapillary 都有此赛项;随着检测技术走向饱和,COCO 去掉了边界框检测这一赛项,但成绩依然出现在榜单上。另外一个变动是新增了 DensePose 和 Panoptic Segmentation 两个赛项。Panoptic Segmentation 同时解决一张图像上前景物体与背景物体的分类问题,把互为分裂的语义分割和实例分割整合为一,推动分割技术步入新境界,不断逼近现实应用。COCO 和 Mapillary 也都有此赛项。
大赛结果出炉
今日,在 Joint COCO and Mapilary Recognition Challenge Workshop(COCO & Mapillary 物体识别联合挑战赛研讨会)上,主办方最终公布了比赛结果。
从 COCO 数据集 Detection Leaderboard 上我们可以看到,港中文 - 商汤联合实验室 MMDet 团队、旷视科技团队在 COCO 实例分割赛项上比分接近(上图中旷视科技团队与 MMDet 团队同为 Winner),MMDet 团队平均得分比旷视科技高了 0.1%。
虽然其他 COCO 赛项得分还未显示在 Leaderboard 上,但我们可以从 COCO + Mapillary 联合挑战赛官网公布的 Workshop 日程上看出:
-
COCO 关键点检测赛项:旷视科技第一,MSRA 团队第二;
-
COCO 全景分割赛项:
- 原文作者:知识铺
- 原文链接:https://index.zshipu.com/geek/post/%E4%BA%92%E8%81%94%E7%BD%91/%E6%97%B7%E8%A7%86%E5%8C%97%E9%82%AE%E7%AD%89%E5%9B%BD%E5%86%85%E5%9B%A2%E9%98%9F%E5%8C%85%E6%8F%BD%E5%85%AD%E9%A1%B9%E7%AC%AC%E4%B8%80%E8%81%94%E5%90%88%E6%8C%91%E6%88%98%E8%B5%9B%E7%BB%93%E6%9E%9C%E5%85%AC%E5%B8%83/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com