基于的海量日志分析平台实践
背景
随着58集团业务的飞速发展,日志数量也呈现指数级增长。传统的日志处理方案,已不再适用,此时急需一套功能强大、稳定可靠的日志处理系统。
为解集团燃眉之急,DB部门自2018年初着手调研解决方案,经多方论证,最终确定使用Elastic Stack处理海量日志数据。
通过Elastic Stack搭建的集中式日志系统,具有以下几个主要特点:
-
收集-能够采集多种来源的日志数据;
-
传输-能够稳定的把日志数据传输到中央系统;
-
存储-如何存储日志数据;
-
分析-可以支持 UI 分析;
-
警告-能够提供错误报告,监控机制;
Elastic Stack在提供了一整套解决方案的同时,可与其他开源软件之间互相配合使用,完美衔接,高效的满足了很多场合的应用。
Elastic Stack简介
Elastic Stack包括Beats、Elasticsearch、Logstash、Kibana、APM等,ELK是其核心套件。
Elasticsearch 是实时全文搜索和分析引擎,提供搜集、分析、存储数据三大功能;是一套开放REST和JAVA API等结构提供高效搜索功能,可扩展的分布式系统。它构建于Apache Lucene搜索引擎库之上。
Logstash 是一个用来搜集、分析、过滤日志的工具。它支持几乎任何类型的日志,包括系统日志、错误日志和自定义应用程序日志。它可以从许多来源接收日志,这些来源包括 syslog、消息传递(例如 RabbitMQ)和JMX,它能够以多种方式输出数据,包括电子邮件、websockets和Elasticsearch。
Kibana 是一个基于Web的图形界面,用于搜索、分析和可视化存储在 Elasticsearch指标中的日志数据。它利用Elasticsearch的REST接口来检索数据,不仅允许用户创建他们自己的数据的定制仪表板视图,还允许他们以特殊的方式查询和过滤数据。
Beats 是轻量级数据采集工具,包括:
1.Packetbeat(搜集网络流量数据);
2.Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据);
3.Filebeat(搜集文件数据);
4.Winlogbeat(搜集 Windows 事件日志数据)
5.Metricbeat(收集系统级的 CPU 使用率、内存、文件系统、磁盘 IO 和网络 IO 统计数据);
6.Auditbeat(采集linux审计日志);
系统架构
第一种ELK架构,是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。建议小规模集群使用。此架构首先由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。
Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web Portal方便的对日志查询,并根据数据生成报表。
第二种架构,引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。这种架构适合于较大集群的解决方案,但由于Logstash中心节点和Elasticsearch的负荷会比较重,可将他们配置为集群模式,以分担负荷,这种架构的优点在于引入了消息队列机制,均衡了网络传输,从而降低了网络闭塞尤其是丢失数据的可能性,但依然存在Logstash占用系统资源过多的问题。
![](
- 原文作者:知识铺
- 原文链接:https://index.zshipu.com/geek/post/%E4%BA%92%E8%81%94%E7%BD%91/%E5%9F%BA%E4%BA%8E%E7%9A%84%E6%B5%B7%E9%87%8F%E6%97%A5%E5%BF%97%E5%88%86%E6%9E%90%E5%B9%B3%E5%8F%B0%E5%AE%9E%E8%B7%B5/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com