你是否厌倦了仅仅“聊天”的 AI 助手?是否梦想着让 AI 拥有类似人类程序员的能力,能够自己看文件、跑代码、执行复杂任务?Anthropic 发布的 Claude Agent SDK 正是帮你实现这一目标的强大工具!

这款 SDK(Software Development Kit)是 Anthropic 官方推出的 Python/TypeScript 工具包,用于与 Claude Agent(原 Claude Code)进行深度交互。它将 Claude Agent 背后强大的智能体框架能力,包括上下文管理、工具调用、错误处理等,带入了你的 Python 应用程序中。

今天,我们就来手把手学习如何使用 Claude Agent SDK,并深入了解它那些让你事半功倍的开发细节!


一、快速上手:安装与环境准备

要开始使用 Claude Agent SDK 强大的智能体功能,准备工作非常简单:

1. 基础要求

使用 Python 版本的 Claude Agent SDK 需要满足以下先决条件:

  • Python 3.10+

  • Node.js

  • Claude Code CLI

     (2.0.0+): 需要通过 npm install -g @anthropic-ai/claude-code 进行安装。

2. 安装 Claude Agent SDK

使用 pip 即可安装官方的 Python 工具包(注意:原 claude-code-sdk 已更名为 claude-agent-sdk):

<span leaf=""># 安装 Claude Agent SDK Python 包<span leaf="">  
<span leaf="">pip install claude-agent-sdk<span leaf="">  
<span leaf="">  
<span leaf=""># 设置 API 密钥(必须)<span leaf="">  
<span leaf="">export ANTHROPIC_API_KEY="your-key-here"<span leaf="">  

二、使用教程:两种核心交互模式与代码细节

Claude Agent SDK 提供了两种主要的交互方式,以适应不同的应用场景:query() 函数(单次任务)和 ClaudeSDKClient 类(持续对话)。

1. 模式一:单次交互与流式输出 (query())

query() 函数是开始使用 Claude Agent SDK 最简单快捷的方式。它为每一次交互创建新的会话,没有历史记忆,并返回一个异步迭代器,非常适合处理流式响应。

核心代码示例:基础查询

<span leaf="">import asyncio<span leaf="">  
<span leaf="">from claude_agent_sdk import query, AssistantMessage, TextBlock<span leaf="">  
<span leaf="">  
<span leaf="">async def basic_query_example():<span leaf="">  
<span leaf="">    # 使用 query() 发送一个单次问题<span leaf="">  
<span leaf="">    async for message in query(prompt="你好,请问你是谁?"):<span leaf="">  
<span leaf="">        # 实时处理流式消息<span leaf="">  
<span leaf="">        if isinstance(message, AssistantMessage):<span leaf="">  
<span leaf="">            for block in message.content:<span leaf="">  
<span leaf="">                if isinstance(block, TextBlock):<span leaf="">  
<span leaf="">                    print(block.text, end="")<span leaf="">  
<span leaf="">    print()<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    asyncio.run(basic_query_example())<span leaf="">  

2. 模式二:持续对话与高级控制 (ClaudeSDKClient)

如果你需要构建一个能“记住”之前对话内容、支持中断、并且能使用自定义工具的智能体,那么你需要使用 ClaudeSDKClient

ClaudeSDKClient 的关键特性

  • 会话连续性

    :在多次 query() 调用中保持对话上下文。

  • 支持中断

    :可以在智能体执行中途停止任务(通过 client.interrupt())。

  • 自定义工具与钩子(Hooks)

    :支持我们在应用中定义进程内工具和钩子,这是 query() 模式所不具备的。

核心代码示例:持续对话

<span leaf="">import asyncio<span leaf="">  
<span leaf="">from claude_agent_sdk import ClaudeSDKClient, AssistantMessage, TextBlock<span leaf="">  
<span leaf="">  
<span leaf="">async def continuous_conversation_example():<span leaf="">  
<span leaf="">    # 使用上下文管理器自动管理连接和断开<span leaf="">  
<span leaf="">    async with ClaudeSDKClient() as client:<span leaf="">  
<span leaf="">        # 第一次查询<span leaf="">  
<span leaf="">        await client.query("告诉我法国的首都是哪里?")<span leaf="">  
<span leaf="">        # 处理响应<span leaf="">  
<span leaf="">        async for message in client.receive_response():<span leaf="">  
<span leaf="">            # ... 打印消息逻辑 ...<span leaf="">  
<span leaf="">            pass<span leaf="">  
<span leaf="">  
<span leaf="">        # 第二次查询,Claude Agent SDK 会记住之前的上下文<span leaf="">  
<span leaf="">        await client.query("那个城市的人口是多少?")<span leaf="">  
<span leaf="">        # 处理后续响应<span leaf="">  
<span leaf="">        async for message in client.receive_response():<span leaf="">  
<span leaf="">            # ... 打印消息逻辑 ...<span leaf="">  
<span leaf="">            pass<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    asyncio.run(continuous_conversation_example())<span leaf="">  

三、 Claude Agent SDK 深入开发细节:赋能智能体

Claude Agent SDK 的强大之处在于它允许开发者通过配置 ClaudeAgentOptions、自定义工具(MCP Server)和钩子(Hooks)来精细控制智能体的行为和安全。

1. 配置智能体行为:ClaudeAgentOptions

ClaudeAgentOptions 是配置 Claude Agent SDK 行为的核心数据类。你可以通过它来设置系统提示、允许使用的工具列表、权限模式和工作目录。

代码细节:权限与环境设置

<span leaf="">from claude_agent_sdk import ClaudeAgentOptions, query<span leaf="">  
<span leaf="">import asyncio<span leaf="">  
<span leaf="">  
<span leaf="">async def options_example():<span leaf="">  
<span leaf="">    options = ClaudeAgentOptions(<span leaf="">  
<span leaf="">        # 1. 设置智能体的角色和行为<span leaf="">  
<span leaf="">        system_prompt="你是一名专业的 Python 开发者",<span leaf="">  
<span leaf="">        # 2. 允许使用内置工具 (Read, Write, Bash)<span leaf="">  
<span leaf="">        allowed_tools=["Read", "Write", "Bash"],<span leaf="">  
<span leaf="">        # 3. 设置权限模式:'acceptEdits' 自动接受文件编辑,加速自动化<span leaf="">  
<span leaf="">        permission_mode='acceptEdits',<span leaf="">  
<span leaf="">        # 4. 设置当前工作目录(CWD),方便文件操作<span leaf="">  
<span leaf="">        cwd="/home/user/my_agent_project"<span leaf="">  
<span leaf="">    )<span leaf="">  
<span leaf="">  
<span leaf="">    async for message in query(<span leaf="">  
<span leaf="">        prompt="创建一个名为 'server.py' 的 Python Web 服务器",<span leaf="">  
<span leaf="">        options=options<span leaf="">  
<span leaf="">    ):<span leaf="">  
<span leaf="">        # ... 处理响应 ...<span leaf="">  
<span leaf="">        pass<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    asyncio.run(options_example())<span leaf="">  

2. 自定义工具:进程内 MCP 服务器(In-Process SDK MCP Servers)

Claude Agent SDK 最超赞的功能之一是能够通过 @tool 装饰器定义自定义 Python 函数,并在你的应用程序进程内运行它们,无需外部进程(MCP 服务器),极大地降低了 IPC(进程间通信)开销和部署复杂性。

代码细节:定义和集成自定义工具

  1. 定义工具

    :使用 @tool 装饰器定义工具名称、描述和输入参数模式。

  2. 创建 MCP 服务器

    :使用 create_sdk_mcp_server() 将工具函数打包成进程内服务器。

  3. 集成到 Options

    :将服务器配置传递给 ClaudeAgentOptions 的 mcp_servers 属性。

<span leaf="">from claude_agent_sdk import tool, create_sdk_mcp_server, ClaudeAgentOptions, ClaudeSDKClient<span leaf="">  
<span leaf="">from typing import Any<span leaf="">  
<span leaf="">import asyncio<span leaf="">  
<span leaf="">  
<span leaf=""># 1. 定义自定义工具 'get_time'<span leaf="">  
<span leaf="">@tool("get_time", "获取当前的系统时间", {})<span leaf="">  
<span leaf="">async def get_time(args: dict[str, Any]) -&gt; dict[str, Any]:<span leaf="">  
<span leaf="">    """工具输入参数为空 {}"""<span leaf="">  
<span leaf="">    from datetime import datetime<span leaf="">  
<span leaf="">    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")<span leaf="">  
<span leaf="">    return {<span leaf="">  
<span leaf="">        "content": [{<span leaf="">  
<span leaf="">            "type": "text",<span leaf="">  
<span leaf="">            "text": f"当前时间:{current_time}"<span leaf="">  
<span leaf="">        }]<span leaf="">  
<span leaf="">    }<span leaf="">  
<span leaf="">  
<span leaf=""># 2. 创建 SDK MCP 服务器<span leaf="">  
<span leaf="">time_server = create_sdk_mcp_server(<span leaf="">  
<span leaf="">    name="system_utilities",<span leaf="">  
<span leaf="">    version="1.0.0",<span leaf="">  
<span leaf="">    tools=[get_time] # 传入自定义工具函数<span leaf="">  
<span leaf="">)<span leaf="">  
<span leaf="">  
<span leaf="">async def custom_tool_session():<span leaf="">  
<span leaf="">    # 3. 配置 Claude Agent Options<span leaf="">  
<span leaf="">    options = ClaudeAgentOptions(<span leaf="">  
<span leaf="">        # 映射服务器名('utils')到服务器配置<span leaf="">  
<span leaf="">        mcp_servers={"utils": time_server},<span leaf="">  
<span leaf="">        # 允许 Claude 使用我们定义的工具。名称格式为: mcp__&lt;server_name&gt;__&lt;tool_name&gt;<span leaf="">  
<span leaf="">        allowed_tools=["mcp__utils__get_time"]<span leaf="">  
<span leaf="">    )<span leaf="">  
<span leaf="">  
<span leaf="">    async with ClaudeSDKClient(options=options) as client:<span leaf="">  
<span leaf="">        await client.query("现在是几点几分?")<span leaf="">  
<span leaf="">        # 智能体将识别并调用我们自定义的 get_time 工具<span leaf="">  
<span leaf="">        async for message in client.receive_response():<span leaf="">  
<span leaf="">            print(message)<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    asyncio.run(custom_tool_session())<span leaf="">  

3. 智能体安全与控制:钩子(Hooks)

钩子(Hooks)是 Claude Agent SDK 中用于在智能体执行周期的特定点(例如,工具使用前或用户提示提交时)拦截和修改行为的确定性回调函数。这是确保安全性和增强可观察性的关键。

代码细节:在工具使用前进行安全检查 (**PreToolUse**)

我们可以定义一个钩子,用于在 Claude Agent SDK 尝试执行 Bash 命令前,阻止危险的命令(如 rm -rf /)。

<span leaf="">from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient, HookMatcher, HookContext<span leaf="">  
<span leaf="">import asyncio<span leaf="">  
<span leaf="">from typing import Any<span leaf="">  
<span leaf="">  
<span leaf="">async def block_dangerous_bash(<span leaf="">  
<span leaf="">    input_data: dict[str, Any],<span leaf="">  
<span leaf="">    tool_use_id: str | None,<span leaf="">  
<span leaf="">    context: HookContext<span leaf="">  
<span leaf="">) -&gt; dict[str, Any]:<span leaf="">  
<span leaf="">    """在 Bash 工具执行前进行验证"""<span leaf="">  
<span leaf="">    tool_name = input_data.get('tool_name', '')<span leaf="">  
<span leaf="">    if tool_name == "Bash":<span leaf="">  
<span leaf="">        command = input_data['tool_input'].get('command', '')<span leaf="">  
<span leaf="">        if 'rm -rf /' in command:<span leaf="">  
<span leaf="">            print("[安全警告] 危险命令被阻止!")<span leaf="">  
<span leaf="">            return {<span leaf="">  
<span leaf="">                'hookSpecificOutput': {<span leaf="">  
<span leaf="">                    'hookEventName': 'PreToolUse',<span leaf="">  
<span leaf="">                    # 阻止操作<span leaf="">  
<span leaf="">                    'permissionDecision': 'deny',<span leaf="">  
<span leaf="">                    'permissionDecisionReason': '危险命令被阻止'<span leaf="">  
<span leaf="">                }<span leaf="">  
<span leaf="">            }<span leaf="">  
<span leaf="">    return {}<span leaf="">  
<span leaf="">  
<span leaf="">async def hooks_example():<span leaf="">  
<span leaf="">    options = ClaudeAgentOptions(<span leaf="">  
<span leaf="">        allowed_tools=["Bash"],<span leaf="">  
<span leaf="">        hooks={<span leaf="">  
<span leaf="">            # 在工具使用前调用钩子<span leaf="">  
<span leaf="">            'PreToolUse': [<span leaf="">  
<span leaf="">                HookMatcher(matcher='Bash', hooks=[block_dangerous_bash]) # 仅匹配 Bash 工具<span leaf="">  
<span leaf="">            ]<span leaf="">  
<span leaf="">        }<span leaf="">  
<span leaf="">    )<span leaf="">  
<span leaf="">  
<span leaf="">    async with ClaudeSDKClient(options=options) as client:<span leaf="">  
<span leaf="">        # 尝试运行一个将被阻止的危险命令<span leaf="">  
<span leaf="">        await client.query("使用 Bash 执行命令 rm -rf /")<span leaf="">  
<span leaf="">        async for message in client.receive_response():<span leaf="">  
<span leaf="">            # 智能体将被钩子阻止,并返回系统消息<span leaf="">  
<span leaf="">            print(message)<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    asyncio.run(hooks_example())<span leaf="">  

4. 代理claude codeDEMO

<span leaf="">#!/usr/bin/env python3<span leaf="">  
<span leaf=""># -*- coding: utf-8 -*-<span leaf="">  
<span leaf="">"""<span leaf="">  
<span leaf="">Claude Agent SDK Basic Test Script<span leaf="">  
<span leaf="">Test the simplest SDK call functionality<span leaf="">  
<span leaf="">"""<span leaf="">  
<span leaf="">  
<span leaf="">import asyncio<span leaf="">  
<span leaf="">import os<span leaf="">  
<span leaf="">from claude_agent_sdk import query, AssistantMessage, TextBlock<span leaf="">  
<span leaf="">  
<span leaf="">  
<span leaf="">async def basic_query_example():<span leaf="">  
<span leaf="">    """Basic query example - test single interaction"""<span leaf="">  
<span leaf="">    print("Starting Claude Agent SDK test...")<span leaf="">  
<span leaf="">    print("=" * 60)<span leaf="">  
<span leaf="">  
<span leaf="">    try:<span leaf="">  
<span leaf="">        # Send a simple test question<span leaf="">  
<span leaf="">        prompt = "Hello! Please introduce yourself in one sentence."<span leaf="">  
<span leaf="">        print(f"Prompt: {prompt}\n")<span leaf="">  
<span leaf="">        print("AI Response:")<span leaf="">  
<span leaf="">        print("-" * 60)<span leaf="">  
<span leaf="">  
<span leaf="">        # Use query() to send single question and handle streaming response<span leaf="">  
<span leaf="">        async for message in query(prompt=prompt):<span leaf="">  
<span leaf="">            # Process streaming messages in real-time<span leaf="">  
<span leaf="">            if isinstance(message, AssistantMessage):<span leaf="">  
<span leaf="">                for block in message.content:<span leaf="">  
<span leaf="">                    if isinstance(block, TextBlock):<span leaf="">  
<span leaf="">                        print(block.text, end="", flush=True)<span leaf="">  
<span leaf="">  
<span leaf="">        print("\n" + "-" * 60)<span leaf="">  
<span leaf="">        print("Test completed successfully!")<span leaf="">  
<span leaf="">  
<span leaf="">    except Exception as e:<span leaf="">  
<span leaf="">        print(f"\nTest failed: {str(e)}")<span leaf="">  
<span leaf="">        print(f"Error type: {type(e).__name__}")<span leaf="">  
<span leaf="">        raise<span leaf="">  
<span leaf="">  
<span leaf="">  
<span leaf="">async def main():<span leaf="">  
<span leaf="">    """Main function - set environment variables and run test"""<span leaf="">  
<span leaf="">  
<span leaf="">    # Set environment variables (using user-provided credentials)<span leaf="">  
<span leaf="">    os.environ["ANTHROPIC_API_KEY"] = "API KEY"<span leaf="">  
<span leaf="">    os.environ["ANTHROPIC_BASE_URL"] = "代理地址"<span leaf="">  
<span leaf="">  
<span leaf="">    print("\nEnvironment Configuration:")<span leaf="">  
<span leaf="">    print(f"   API Key: {os.environ['ANTHROPIC_API_KEY'][:20]}...")<span leaf="">  
<span leaf="">    print(f"   Base URL: {os.environ['ANTHROPIC_BASE_URL']}\n")<span leaf="">  
<span leaf="">  
<span leaf="">    # Run basic test<span leaf="">  
<span leaf="">    await basic_query_example()<span leaf="">  
<span leaf="">  
<span leaf="">  
<span leaf="">if __name__ == "__main__":<span leaf="">  
<span leaf="">    # Run async main function<span leaf="">  
<span leaf="">    asyncio.run(main())<span leaf="">  

四、总结:为什么选择 Claude Agent SDK

Claude Agent SDK 不仅仅是一个 API 包装器,它是一套用于构建真正自主 AI 系统的基础设施。它建立在为 Claude Code 提供支持的强大代理框架之上。

  • 真正的自主性

    Claude Agent SDK 实现了“给 AI 一台电脑”的核心理念,支持金融、客服、SRE 运维等多种复杂应用场景。

  • 工程级就绪

    :它提供了生产环境所需的内置错误处理、会话管理、权限控制和自动上下文压缩功能,让你无需担心上下文溢出或不可靠的执行。

  • 灵活的工具生态系统

    :通过 Model Context Protocol (MCP) 和进程内 SDK MCP 服务器,你可以无缝地将自定义 Python 函数暴露给 Claude Agent 使用,实现低开销、高效率的工具调用。

如果你希望构建一个能够持久运行、安全可靠、并且能够通过工具集成到你的现有系统的 AI 智能体,那么 Claude Agent SDK 绝对是你的首选框架。快去尝试这些超赞的功能吧!